Skip to main content

Khi B di động trên đường tròn, chứng minh rằng đường phân giác ngoài của góc OBH đi qua một điểm cố định.

Khi B di động trên đường tròn, chứng minh rằng đường phân giác ngoài của góc OBH đi qua

Câu hỏi

Nhận biết

Khi B di động trên đường tròn, chứng minh rằng đường phân giác ngoài của góc OBH đi qua một điểm cố định.


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi BA' là đường phân giác của góc ngoài (A' ϵ (O)) của góc OBH

=> Góc A'BA vuông => AA' là đường kính (vì \widehat{A'BA}  là góc nội tiếp chắn nửa đường tròn)  => điều phải chứng minh.

Câu hỏi liên quan

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông