Skip to main content

Rút gọn biểu thức B = \frac{\sqrt{a}}{a+1}.\sqrt{a+2+\frac{1}{a}} với a > 0

Rút gọn biểu thức B = . với a > 0

Câu hỏi

Nhận biết

Rút gọn biểu thức B = \frac{\sqrt{a}}{a+1}.\sqrt{a+2+\frac{1}{a}} với a > 0


A.
B = 0
B.
B = 1
C.
B = 2
D.
B = 3
Đáp án đúng: B

Lời giải của Luyện Tập 365

 B = \frac{\sqrt{a}}{a+1}.\sqrt{a+2+\frac{1}{a}} với a > 0

\frac{\sqrt{a}}{a+1}.\sqrt{\frac{a^{2}+a+1}{a}} = \frac{\sqrt{a}}{a+1}.\sqrt{\frac{(a+1)^{2}}{a}} 

\frac{\sqrt{a}}{a+1} . \frac{a+1}{\sqrt{a}} (a > 0)

= 1

Câu hỏi liên quan

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên