Skip to main content

2√5 - \sqrt{14+6\sqrt{5}}

2√5 -

Câu hỏi

Nhận biết

2√5 - \sqrt{14+6\sqrt{5}}


A.
x2 + 6x + 4 = 0
B.
x2 + 6x - 2 = 0
C.
x2 - 6x + 4 = 0
D.
2x2 + 6x + 4 = 0
Đáp án đúng: A

Lời giải của Luyện Tập 365

Giả sử phương trình cần lặp có dạng  x2 + px + q = 0  với p, q ϵ Q.

2\sqrt{5}-\sqrt{14+6\sqrt{5}}=2\sqrt{5}-\sqrt{(3-\sqrt{5})^{2}}

= 2√5 - 3 - √5 = √5 - 3

Làm tương tự ta có: p = 6 và q = 4 

Vậy phương trình có dạng x2 + 6x + 4 = 0

Câu hỏi liên quan

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Rút gọn A

    Rút gọn A

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A