Skip to main content

Xét tam giác ABC (AB ≥ AC) nội tiếp đường tròn (O). Tiếp tuyến A cắt đường thẳng BC tại M. Trả lời câu hỏi dưới đây:Chứng minh frac{MC}{MB} = frac{AC^{2}}{AB^{2}}

Xét tam giác ABC (AB ≥ AC) nội tiếp đường tròn (O). Tiếp tuyến A cắt đường thẳng BC

Câu hỏi

Nhận biết

Xét tam giác ABC (AB ≥ AC) nội tiếp đường tròn (O). Tiếp tuyến A cắt đường thẳng BC tại M.

Trả lời câu hỏi dưới đây:

Chứng minh frac{MC}{MB} = frac{AC^{2}}{AB^{2}}


A.
frac{S_{Delta MAC}}{S_{Delta MAB}} = frac{MB}{MC}; frac{S_{Delta MCA}}{S_{Delta MAB}} =   frac{AC^{2}}{AB^{2}}
B.
frac{S_{Delta MCA}}{S_{Delta MAB}} =  frac{MC}{MB};  frac{S_{Delta MAC}}{S_{Delta MAB}}frac{MB}{MC}
C.
frac{S_{Delta MCA}}{S_{Delta MAB}} =  frac{MC}{MB}; frac{S_{Delta MCA}}{S_{Delta MAB}} =   frac{AC^{2}}{AB^{2}}
D.
frac{S_{Delta MCA}}{S_{Delta MAB}} =   frac{AB^{2}}{BC^{2}}; frac{S_{Delta MCA}}{S_{Delta MAB}} =  frac{MC}{MB}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Ta có  frac{S_{Delta MCA}}{S_{Delta MAB}} =   frac{AC^{2}}{AB^{2}} (1)

(Tỉ số diện tích bằng bình phương tỉ số đồng dạng).

Mặt khác  frac{S_{Delta MCA}}{S_{Delta MAB}} =  frac{MC}{MB} (2)

(Do hai tam giác này có chung đường cao hạ từ đỉnh A).

Từ (1) và (2) ta có : frac{MC}{MB}frac{AC^{2}}{AB^{2}} (3)

Câu hỏi liên quan

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k