Skip to main content

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = b, AA' = c. Gọi M là trung điểm của B'C'. Mặt phẳng (MAC) chia khối lập phương thành hai phần. Tính thể tích mỗi phần theo a, b, c.

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = b, AA' = c. Gọi M là

Câu hỏi

Nhận biết

Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, AD = b, AA' = c. Gọi M là trung điểm của B'C'. Mặt phẳng (MAC) chia khối lập phương thành hai phần. Tính thể tích mỗi phần theo a, b, c.


A.
V\frac{1}{6}abc +  \frac{3}{2}abc = \frac{7}{24}abc (đvtt);  V= V - V\frac{17}{24}abc (đvtt)
B.
V\frac{1}{6}abc +  \frac{1}{8}abc = \frac{6}{27}abc (đvtt);  V= V - V\frac{17}{24}abc (đvtt)
C.
V\frac{1}{6}abc +  \frac{1}{8}abc = \frac{7}{24}abc (đvtt);  V= V - V\frac{17}{27}abc (đvtt)
D.
V\frac{1}{6}abc +  \frac{1}{8}abc = \frac{7}{24}abc (đvtt);  V= V - V\frac{17}{24}abc (đvtt)
Đáp án đúng:

Lời giải của Luyện Tập 365

Gọi N là trung điểm của A'B' ta có MN song song với A'C' nên MN song song với AC. Suy ra N ∈ (MAC). Gọi V1 là thể tích của khối đa diện ABCMNB' và V2 là thể tích khối ACDNMC'D'A'.

Ta có:

V1 = VN.ABC + VN.BCMB’

 VN.ABC =  \frac{1}{3} BB’.S_{\Delta ABC } = \frac{1}{6}abc.

VN.BCMB’\frac{1}{3} NB'.SBCMB’\frac{1}{3} NB' . \frac{3}{4} SBCC’B’\frac{1}{8}abc.

Suy ra V\frac{1}{6}abc +  \frac{1}{8}abc = \frac{7}{24}abc.

Do thể tích của khối hộp đã cho là: V = abc nên V2 = V - V\frac{17}{24}abc (đvtt)

Câu hỏi liên quan

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.