Skip to main content

Giải phương trình: √3sin(3x - \frac{\pi}{5} ) + 2sin( 8x - \frac{\pi}{3}) = 2sin(2x + \frac{11\pi}{15}) + 3cos ( 3x - \frac{\pi}{5}) .

Giải phương trình:
√3sin(3x -

Câu hỏi

Nhận biết

Giải phương trình:
√3sin(3x - \frac{\pi}{5} ) + 2sin( 8x - \frac{\pi}{3}) = 2sin(2x + \frac{11\pi}{15}) + 3cos ( 3x - \frac{\pi}{5}) .


A.
x = -\frac{\pi}{25} + \frac{\pi}{6} + \frac{m2\pi}{5}, x = - \frac{\pi}{25} - \frac{\pi}{6} + \frac{m2\pi}{5}; m∈ Z, x = -\frac{8\pi}{45} + \frac{k\pi}{3}; k ∈ Z.
B.
x = -\frac{\pi}{25} + \frac{\pi}{6} + \frac{m2\pi}{5}, x =  \frac{\pi}{25} - \frac{\pi}{6} + \frac{m2\pi}{5}; m∈ Z, x = \frac{8\pi}{45} + \frac{k\pi}{3}; k ∈ Z.
C.
x = \frac{\pi}{25} + \frac{\pi}{6} + \frac{m2\pi}{5}, x = - \frac{\pi}{25} - \frac{\pi}{6} + \frac{m2\pi}{5}; m∈ Z, x = \frac{8\pi}{45} + \frac{k\pi}{3}; k ∈ Z.
D.
x = -\frac{\pi}{25} + \frac{\pi}{6} + \frac{m2\pi}{5}, x = - \frac{\pi}{25} - \frac{\pi}{6} + \frac{m2\pi}{5}; m∈ Z, x = \frac{8\pi}{45} + \frac{k\pi}{3}; k ∈ Z.
Đáp án đúng: D

Lời giải của Luyện Tập 365

Phương trình đã cho tương đương với √3sin(3x - \frac{\pi}{5}) + 2sin(8x - \frac{\pi}{3} ) = 2sin(2x + \frac{11\pi}{15}) + 3cos(3x - \frac{\pi}{5} )

⇔ 2sin(2x + \frac{11\pi}{15} ) – 2sin(8x - \frac{\pi}{3}) = √3sin(3x - \frac{\pi}{5}) – 3cos(3x - \frac{\pi}{5})

= √3( sin ( 3x - \frac{\pi}{5}) – tan\frac{\pi}{3}cos( 3x -\frac{\pi}{5} ) )

⇔ 4cos( 5x + \frac{\pi}{5})sin( \frac{8\pi}{15} - 3x) = 2√3( cos\frac{\pi}{3}. sin( 3x -\frac{\pi}{5}) – sin\frac{\pi}{3}.cos(3x - \frac{\pi}{5}))

⇔ 2cos(5x + \frac{\pi}{5})sin(\frac{8\pi}{15} - 3x ) = √3sin( 3x - \frac{8\pi}{15} )

⇔ sin( 3x - \frac{8\pi}{15})[ 2cos( 5x + \frac{\pi}{5}) + √3] = 0

\begin{bmatrix}sin(3x-\frac{8\pi}{15})=0(*))\\cos(5x+\frac{\pi}{5})=\frac{-\sqrt{3}}{2}(**))\end{bmatrix}

(*) 3x - \frac{8\pi}{15} = kπ; k ∈ Z ⇔ x =\frac{8\pi}{45} + \frac{k\pi}{3}; k ∈ Z.

(**)  5x + \frac{\pi}{5} =  ±\frac{5\pi}{6}+ m2π ; m∈ Z

\begin{bmatrix}5x=-\frac{\pi}{5}+\frac{5\pi}{6}+m2\pi\\5x=-\frac{\pi}{5}-\frac{5\pi}{6}+m2\pi\end{bmatrix}\begin{bmatrix}x=-\frac{\pi}{25}+\frac{\pi}{6}+\frac{m2\pi}{5}\\x=-\frac{\pi}{25}-\frac{\pi}{6}+\frac{m2\pi}{5}\end{bmatrix} 

Vậy \begin{bmatrix}x=-\frac{\pi}{25}+\frac{\pi}{6}+\frac{m2\pi}{5}\\x=-\frac{\pi}{25}-\frac{\pi}{6}+\frac{m2\pi}{5};m\in \mathbb{Z}\\x=\frac{8\pi}{45}+\frac{k\pi}{3};k\in \mathbb{Z}\end{bmatrix}

Câu hỏi liên quan

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.