Skip to main content

Trong mặt phẳng Oxy, cho đường tròn có phương trình (C): x2 + y2 – 2x + 4y + 1 = 0 và điểm M(4 ; 3). Chứng tỏ rằng qua M  có hai tiếp tuyến với (C) và giả sử A, B là hai điểm tiếp xúc. Lập phương trình đường thẳng đi qua A, B.

Trong mặt phẳng Oxy, cho đường tròn có phương trình (C): x2 +

Câu hỏi

Nhận biết

Trong mặt phẳng Oxy, cho đường tròn có phương trình (C): x2 + y2 – 2x + 4y + 1 = 0 và điểm M(4 ; 3). Chứng tỏ rằng qua M  có hai tiếp tuyến với (C) và giả sử A, B là hai điểm tiếp xúc. Lập phương trình đường thẳng đi qua A, B.


A.
(AB): 3x + 5y + 3= 0
B.
(AB): 3x + 5y + 2= 0
C.
(AB): 3x + 6y+ 2= 0
D.
(AB): 3x + 5y + 4 = 0
Đáp án đúng: A

Lời giải của Luyện Tập 365

Viết lại phương trình (C): (x – 1)2 + (y + 2)2 = 4; tâm I(1; -2), bán kính R = 2; M(4 ; 3) => IM =  \sqrt{34} > R

=>  Qua M có hai tiếp tuyến. A, B thuộc đường tròn đường kính IM tâm E\left ( \frac{5}{2} ;\frac{1}{2}\right )

=>  Phương trình (C1): x2 + y2 – 5x –y -2  = 0. Do đó

A, B là giao của (C) và (C1) => (AB): 3x +5y+3 = 0.         

Câu hỏi liên quan

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?