Skip to main content

Tính khoảng cách OA, OB, OC, OD.

Tính khoảng cách OA, OB, OC, OD.

Câu hỏi

Nhận biết

Tính khoảng cách OA, OB, OC, OD.


A.
OA \approx 2,24 ; OB \approx 1,12 ; OC \approx 3,36 ; OD \approx 4,48
B.
OA \approx 2,24 ; OB \approx 4,48 ; OC \approx 3,36 ; OD \approx 1,12
C.
OA \approx 1,12 ; OB \approx 4,48 ; OC \approx 3,36 ; OD \approx 2,24
D.
OA \approx 1,12 ; OB \approx 2,24 ; OC \approx 2,24 ; OD \approx 4,48
Đáp án đúng: D

Lời giải của Luyện Tập 365

OA = \sqrt{0,5^{2}+1^{2}}\approx 1,12

OB = \sqrt{1^{2}+2^{2}} = √5 \approx 2,24

OB = \sqrt{(-1)^{2}+(-2)^{2}} = √5 \approx 2,24

OD = \sqrt{2^{2}+4^{2}} = 2√5 \approx 4,48

 

Câu hỏi liên quan

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k