Skip to main content

Tính f(x1), f(x2), f(kx1), f(x1 + x2).

Tính f(x1), f(x2), f(kx1), f(x1 + x2).

Câu hỏi

Nhận biết

Tính f(x1), f(x2), f(kx1), f(x1 + x2).


A.
f(x1) = ax1 , f(x2) = ax2 , f(x1 + x2) = ax1 + ax2
B.
f(x1) = x1 , f(x2) = ax2 , f(x1 + x2) = ax1 + ax2
C.
f(x1) = ax1 , f(x2) = ax2 , f(x1 + x2) = x1 + x2
D.
f(x1) = x1 , f(x2) = x2 , f(x1 + x2) = ax1 + ax2
Đáp án đúng: A

Lời giải của Luyện Tập 365

Câu hỏi liên quan

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A