Skip to main content

Cho biểu thức A = (\frac{\sqrt{a}+1}{\sqrt{a}-1} - \frac{\sqrt{a}-1}{\sqrt{a}+1} + 4√a)(√a - \frac{1}{\sqrt{a}}) Trả lời câu hỏi dưới đây:Tìm giá trị của A nếu a = \frac{\sqrt{6}}{2+\sqrt{6}}

Cho biểu thức A = ( -  + 4√a)(√a - )            Trả lời câu hỏi dưới đây:Tìm giá trị của

Câu hỏi

Nhận biết

Cho biểu thức A = (\frac{\sqrt{a}+1}{\sqrt{a}-1} - \frac{\sqrt{a}-1}{\sqrt{a}+1} + 4√a)(√a - \frac{1}{\sqrt{a}})

Trả lời câu hỏi dưới đây:

Tìm giá trị của A nếu a = \frac{\sqrt{6}}{2+\sqrt{6}}


A.
A = 12 - 4√6
B.
A = 12 + 4√6
C.
A = 12 + 4√3
D.
A = 12 - 4√3
Đáp án đúng: A

Lời giải của Luyện Tập 365

A = 4a nếu a = \frac{\sqrt{6}}{2+\sqrt{6}} thì A = \frac{4\sqrt{6}}{2+\sqrt{6}} = \frac{4\sqrt{6}(2-\sqrt{6})}{4-6}  

 = -2√6(2 - √6) = 12 - 4√6

Câu hỏi liên quan

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Rút gọn A

    Rút gọn A