Skip to main content

Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

Tìm nghiệm trong khoảng(0,π) của phương trình

Câu hỏi

Nhận biết

Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}


A.
\begin{bmatrix}\\x=-\frac{\prod}{9}\\x=-\frac{7\prod}{9}\end{bmatrix}
B.
\begin{bmatrix}\\x=\frac{\prod}{9}\\x=-\frac{7\prod}{9}\end{bmatrix}
C.
\begin{bmatrix}\\x=-\frac{\prod}{9}\\x=\frac{7\prod}{9}\end{bmatrix}
D.
\begin{bmatrix}x=\frac{\prod}{9}\\x=\frac{7\prod}{9}\end{bmatrix}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Điều kiện:  \left\{\begin{matrix}cos(x-\frac{\prod}{4})\neq0\\sinx\neq0\end{matrix}\right.

 Phương trình đã cho tương đương vơi \frac{2cosx\left(sinx+cosx\right)+2\left(sinx+cosx\right)}{\frac{1}{\sqrt{2}}\left(cosx+sinx\right)}=\frac{\sqrt{6}cos2x}{sinx}

⇔ (2cosx+2)sinx=√3cos2x⇔sin2x+2sinx=√ 3cos2x

\frac{1}{2}sin2x-\frac{\sqrt{3}}{2}cos2x=-sinx⇔sin(2x-\frac{\prod}{3})=sin(-x)

\begin{bmatrix}2x-\frac{\prod}{3}=-x+k2\prod\\2x-\frac{\prod}{3}=\prod-(-x)+k2\prod \end{bmatrix}\begin{bmatrix}x=\frac{\prod}{9}+k\frac{2\prod}{3}\\x=\frac{4\prod}{3}+k2\prod\end{bmatrix} ;k\epsilonZ

suy ra nghiệm thuộc (0,\prod) là x=\frac{\prod}{9},x=\frac{7\prod}{9}(thỏa mãn đk)

Câu hỏi liên quan

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C)

    Trong mặt phẳng với hệ trục Oxy, cho điểm M(4; -3) và đường tròn (C): x2 + y2 - 4x - 2y +1 = 0 với tâm là I. Lập phương trình tổng quát của đường thẳng d đi qua M và cắt đường tròn (C) tại hai điểm phân biệt P, Q sao cho tam giác IPQ vuông.

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Trong mặt phẳng với hệ trục Oxy , cho tam giác ABC có trung tuyến và phâ

    Trong mặt phẳng với hệ trục Oxy , cho tam giác ABC có trung tuyến và phân giác trong kẻ từ cùng một đỉnh B có phương trình lần lượt là  d1: 2x + y - 3 = 0, d2: x  + y - 2 = 0. Điểm M(2;1) thuộc đường thẳng AB, đường tròn ngoại tiếp tam giác ABC có bán kính bằng √5. Biết đỉnh A có hoành độ dương, hãy xác định tọa độ các đỉnh của tam giác ABC.