Skip to main content

Chứng minh các bất đẳng thức sau: Trả lời câu hỏi dưới đây:(\frac{\sqrt{5}+1}{1+\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}-1}{1+\sqrt{3}-\sqrt{5}})(\sqrt{3}-4\sqrt{\frac{1}{3}} + 2)√0,2 - √1,01 > 0

Chứng minh các bất đẳng thức sau:            Trả lời câu hỏi dưới đây: + 2)√0,2 - √1,01

Câu hỏi

Nhận biết

Chứng minh các bất đẳng thức sau:

Trả lời câu hỏi dưới đây:

(\frac{\sqrt{5}+1}{1+\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}-1}{1+\sqrt{3}-\sqrt{5}})(\sqrt{3}-4\sqrt{\frac{1}{3}} + 2)√0,2 - √1,01 > 0


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Biến đổi vế trái ta có:

\frac{\sqrt{5}+\sqrt{15}-5+1+\sqrt{3}-\sqrt{5}+\sqrt{5}+5+\sqrt{15}-1-\sqrt{5}-\sqrt{3}}{2\sqrt{3}-1}\frac{3-4+2\sqrt{3}}{\sqrt{3}}.\sqrt{0,2}-\sqrt{1,01}=

\frac{2\sqrt{15}}{2\sqrt{3}-1}.\frac{2\sqrt{3}-1}{\sqrt{3}}.√0,2 - √1,01

= 2√5 . √0,2 - √1,01

= 2 - √1,01 > 0

Bất đẳng thức được chứng minh.

Câu hỏi liên quan

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Rút gọn A

    Rút gọn A

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0