Rút gọn biểu thức S = 12 + 22 + 32 + ..... + (n+ 1)2
Ta có (1 + x)n = + x + x2 + ….. + xn
⇔ x(1 + x)n = x + x2 + x3 + …… +xn + 1
Đạo hàm hai vế có
(1 + x)n + nx(1 + x)n - 1 = + 2x + 3x2 + ….+ nxn
Nhân hai vế với x và đạo hàm hai vế sau đó thay x = 1 ta được
S = 2n + 3n2n - 1+ n(n - 1)2n - 2