Skip to main content

Đơn giản và tính giá trị biểu thức D với x = 16 biết D = \frac{\sqrt{x^{3}}+1}{x+1-\sqrt{x}}

Đơn giản và tính giá trị biểu thức D với x = 16 biết D =

Câu hỏi

Nhận biết

Đơn giản và tính giá trị biểu thức D với x = 16 biết D = \frac{\sqrt{x^{3}}+1}{x+1-\sqrt{x}}


A.
D = 3
B.
D = 5
C.
D = 7
D.
D = 10
Đáp án đúng: B

Lời giải của Luyện Tập 365

D = \frac{\sqrt{x^{3}}+1}{x+1-\sqrt{x}} = \frac{(\sqrt{x}+1)(\sqrt{x^{2}}-\sqrt{x}+1)}{x+1-\sqrt{x}} = √x + 1

Với x = 16 => D = 5

Câu hỏi liên quan

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  

    Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn:  x2  - 12x – 14y < 0 

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Rút gọn A

    Rút gọn A

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a