Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E): \frac{x^{2}}{4}+\frac{y^{2}}{3}=1. Gọi F1,F2 lần lượt là hai tiêu điểm của (E). Xác định điểm M thuộc đường elip (E) sao cho M có tung độ dương và bán kính đường tròn nội tiếp của tam giác MF1F2 bằng \frac{1}6{}

Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E):

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy, cho elip (E): \frac{x^{2}}{4}+\frac{y^{2}}{3}=1. Gọi F1,F2 lần lượt là hai tiêu điểm của (E). Xác định điểm M thuộc đường elip (E) sao cho M có tung độ dương và bán kính đường tròn nội tiếp của tam giác MF1F2 bằng \frac{1}6{}


A.
M(-\sqrt{2};\frac{1}{2}) hoặc M(\sqrt{2};\frac{1}{2})
B.
M(\sqrt{3};3) hoặc M(-\sqrt{3};3)
C.
M(\sqrt{3};\frac{1}{2}) hoặc M(-\sqrt{3};\frac{1}{2})
D.
M(1;\frac{1}{2}) hoặc M(-1;\frac{1}{2})
Đáp án đúng: C

Lời giải của Luyện Tập 365

Kí hiệu p,r lần lượt là nửa chu vi và bán kính đường tròn nội tiếp tam giác  MF1F2 .

Ta có: p=\frac{MF_{1}+MF_{2}+F_{1}F_{2}}{2}\frac{2a+2c}{2}=a+c=2+1=3

=> SMF1F2=pr = 3\frac{1}{6}=\frac{1}{2} => \frac{1}{2}.F1F2 .|yM|=\frac{1}{2} => |yM|=\frac{1}{F_{1}.F_{2}}=\frac{1}{2}.

Mà yM >0 => y\frac{1}{2} => \frac{x_{M}^{2}}{4}+\frac{\frac{1}{4}}{1} =1 => \frac{x_{M}^{2}}{4}=\frac{3}{4} => xM= ± \sqrt{3}.

Vậy có hai điểm thỏa mãn yêu cầu bài toán là (\sqrt{3};\frac{1}{2}) và (-\sqrt{3};\frac{1}{2})

Câu hỏi liên quan

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α)

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Cho các số thực x, y, z không âm thỏa mãn điều kiện

    Cho các số thực x, y, z không âm thỏa mãn điều kiện x3 + y3 + z3= 2 + 3xyz. Tìm giá trị nhỏ nhất của biểu thức P = x2 + 2y2 + 3z2.

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx