Skip to main content

Có 5 bông hoa hồng bạch, 7 bông hoa hồng nhung và 4 bông hoa cúc vàng. Chọn ngẫu nhiên 3 bông hoa. Tính xác suất để 3 bông hoa được chọn không cùng một loại.

Có 5 bông hoa hồng bạch, 7 bông hoa hồng nh

Câu hỏi

Nhận biết

Có 5 bông hoa hồng bạch, 7 bông hoa hồng nhung và 4 bông hoa cúc vàng. Chọn ngẫu nhiên 3 bông hoa. Tính xác suất để 3 bông hoa được chọn không cùng một loại.


A.
\frac{73}{80}
B.
\frac{71}{80}
C.
\frac{79}{80}
D.
\frac{77}{80}
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi A, B, C tương ứng là 3 biến cố "Chọn được ba bông hoa hồng bạch”  "Chọn được ba bông hoa hồng nhung”  "Chọn được ba bông hoa cúc vàng” H là biến cố ‘Chọn được ba bông hoa cùng loại” A, B, C đôi một xung khắc

và H = A ∪ B ∪ C → P(H) = P(A) + P(B) + P(C)  với P(A) = \frac{C_{5}^{3}}{C_{16}^{3}}=\frac{10}{560}

P(B) = \frac{C_{7}^{3}}{C_{16}^{3}}=\frac{35}{560}; P(C) = \frac{C_{3}^{4}}{C_{16}^{3}}=\frac{4}{560}; P(H) = \frac{49}{560}=\frac{7}{80}

Biến cố chọn ba bông hoa không cùng loại là \bar{H}, P(\bar{H}) = 1− P(\bar{H}) = 1 - \frac{7}{80} = \frac{73}{80}

Câu hỏi liên quan

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.