Skip to main content

Trong mặt phẳng Oxy, cho hai đường thẳng có phương trình:                                                       d1: x + y + 1 = 0;                                                       d2: 2x – y – 1 = 0. Lập phương trình đường thẳng đi qua điểm M(1 ; -1) cắt d1, d2 tương ứng tại A, B sao cho:                                                     \dpi{80} 2\vec{MA} + \vec{MB} = \vec{0}

Trong mặt phẳng Oxy, cho hai đường thẳng có phương trình:
 &nb

Câu hỏi

Nhận biết

Trong mặt phẳng Oxy, cho hai đường thẳng có phương trình:
                                                      d1: x + y + 1 = 0;
                                                      d2: 2x – y – 1 = 0.
Lập phương trình đường thẳng đi qua điểm M(1 ; -1) cắt d1, d2 tương ứng tại A, B sao cho:
 
                                                  \dpi{80} 2\vec{MA} + \vec{MB} = \vec{0}


A.
Phương trình đường thẳng phải tìm là: x - y -1 = 0
B.
Phương trình đường thẳng phải tìm là: x + 2y -3 = 0
C.
Phương trình đường thẳng phải tìm là: x - y = 0
D.
Phương trình đường thẳng phải tìm là: x = 1
Đáp án đúng: D

Lời giải của Luyện Tập 365

Ta có:

M(1;-1); xA + yA + 1 = 0; 2xB – yB – 1 = 0 => yA = - xA – 1; yB = 2xB – 1.

\dpi{80} \vec{MA} = (xA – 1; -xA )     ;        \dpi{80} \vec{MB} =  (xB -1; 2xB)

\dpi{80} 2\vec{MA}+ \vec{MB}= \vec{0} <=> \dpi{80} \left\{\begin{matrix} 2x_{A}+ x_{B}-3 =0\\ -2x_{A}+2x_{B}=0\end{matrix}\right.

Ta được: A(1;-2), B(1; 1) => Phương trình đường thẳng phải tìm là: x = 1

Câu hỏi liên quan

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{2}}sin4xln(1+cos^{2}x)dx

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.