Skip to main content

Cho E là tập hợp các số gồm 3 chữ số khác nhau đôi một được lập thành từ các số 1, 2, 3, 4, 5, 6. Lấy ngẫu nhiên một phần tử của E. Tính xác suất sao cho lấy được một số mà các chữ số của nó đều chẵn.

Cho E là tập hợp các số gồm 3 chữ số khác nhau đôi một được lập thành từ các số 1,

Câu hỏi

Nhận biết

Cho E là tập hợp các số gồm 3 chữ số khác nhau đôi một được lập thành từ các số 1, 2, 3, 4, 5, 6. Lấy ngẫu nhiên một phần tử của E. Tính xác suất sao cho lấy được một số mà các chữ số của nó đều chẵn.


A.
P = \frac{1}{15}
B.
P = \frac{1}{20}
C.
P= \frac{1}{25}
D.
P = \frac{1}{30}
Đáp án đúng: B

Lời giải của Luyện Tập 365

Tìm số phần tử của E:

Gọi \overline{abc} là số có 3 chữ số khác nhau. Khi đó a có 6 cách chọn từ 1 đến 6 còn b có 5 cách  chọn (trừ số đã chọn cho a), c có 4 cách chọn

Vậy có tất cả 6.5.4 = 120 số thuộc E.

Gọi  Ω là không gian mẫu. Do chọn 1 phần tử thuộc E nên n( Ω ) = 120

Gọi A là biến số: "chọn được số mà các chữ số của nó đều chẵn " 

=> A = {246; 264; 462; 426; 642; 624} -> n(A) = 6

Vậy xác suất cần tìm là P(A) = \frac{n(A))}{n(\Omega )}  = \frac{6}{120} = \frac{1}{20}

Câu hỏi liên quan

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng&

    Trong không gian với hệ trục tọa độ Oxyz, viết phương trình đường thẳng ∆ nằm trong mặt phẳng (P): x+y-z+1=0, cắt các đường thẳng d: \frac{x-1}{1}=\frac{y}{1}=\frac{z-2}{2}, d':\frac{x-3}{-1}=\frac{y-1}{1}=\frac{z-1}{-2} và tạo với đường thẳng d một góc 30^{0} .

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.