Skip to main content

Trong mặt phẳng với hệ trục Oxy, cho đường tròn (C): (x – 1)2 + (y + 2)2 = 4. Tìm các điểm A, B, C nằm trên đường tròn (C) biết rằng điểm B có hoành độ dương AB = BC và M(0; -1) là trung điểm cạnh BC

Trong mặt phẳng với hệ trục Oxy, cho đường tròn (C): (x – 1)2

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ trục Oxy, cho đường tròn (C): (x – 1)2 + (y + 2)2 = 4. Tìm các điểm A, B, C nằm trên đường tròn (C) biết rằng điểm B có hoành độ dương AB = BC và M(0; -1) là trung điểm cạnh BC


A.
A(3; -4), B(1; 0), C(-1; -2)
B.
A(3; -3), B(1; 0), C(-1; -2)
C.
A(3; -2), B(1; 0), C(-1; -2)
D.
A(3; -1), B(1; 0), C(-1; -2)
Đáp án đúng: C

Lời giải của Luyện Tập 365

Đường thẳng BC đi qua M và nhận \overrightarrow{MI}(1;-1) làm VTPT nên BC : x - y - 1 = 0

Vì B ∈ BC => B(b;b - 1) (b > 0)

Ta có : IB = R ⇔ (b – 1)2 + (b + 1)2 =  4 ⇔ \begin{bmatrix} b=1\\b=-1 \end{bmatrix} 

Vì điểm B có hoành độ dương nên b = 1. Khi đó B(1;0). Điểm C đối xứng với B qua M nên C(-1; -2)

vì \left\{\begin{matrix} AI=IC\\AB=BC \end{matrix}\right. nên đường thẳng AC nhận \overrightarrow{IB}(0; 2) làm VTPT

Mặt khác đường thẳng AB đi qua C nên AC: y + 2 = 0 

Gọi E là giao điểm của AC và BI. Ta có E(1; -2)

Vì A đối xứng với C qua E nên A(3; -2)

Câu hỏi liên quan

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}