Skip to main content

Chứng minh rằng: \sqrt{5}.(\frac{1}{\sqrt{5}-2}+\frac{1}{\sqrt{5}+2})=10

Chứng minh rằng:

Câu hỏi

Nhận biết

Chứng minh rằng: \sqrt{5}.(\frac{1}{\sqrt{5}-2}+\frac{1}{\sqrt{5}+2})=10


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Ta có: \sqrt{5}.(\frac{1}{\sqrt{5}-2}+\frac{1}{\sqrt{5}+2})=\sqrt{5}.(\frac{\sqrt{5}+2+\sqrt{5}-2}{(\sqrt{5}+2)(\sqrt{5}-2)})

      =\sqrt{5}.\frac{2\sqrt{5}}{5-4}=10

Vậy \sqrt{5}.(\frac{1}{\sqrt{5}-2}+\frac{1}{\sqrt{5}+2})=10   (đpcm).

Câu hỏi liên quan

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.