Skip to main content

Chứng minh: PI.AB = AC.CI

Chứng minh: PI.AB = AC.CI

Câu hỏi

Nhận biết

Chứng minh: PI.AB = AC.CI


A.
Click để xem lời giải chi tiết
Đáp án đúng: A

Lời giải của Luyện Tập 365

Chứng minh PI.AB = AC.CI

Chứng minh \widehat{PCB} = 90^{\circ}   =>\widehat{ACB} + \widehat{C1} = 90^{\circ}

 Ta có : \widehat{P} + \widehat{C1} = 90^{\circ}   => \widehat{ACB} + \widehat{C1} = 90^{\circ} (1)

Chứng minh tứ giác ADIF nội tiếp => \widehat{CAB} = \widehat{PIC} (2)

Từ (1) và (2) => ∆ PIC ~  ∆ CAB (g.g)

=> \frac{PI}{AC} = \frac{IC}{AB} => PI.AB = AC.IC ( đpcm).

Câu hỏi liên quan

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Rút gọn A

    Rút gọn A