Tìm số phức z thoả mãn: |z - 2 + i| = 2. Biết phần ảo nhỏ hơn phần thực 3 đơn vị.
Câu hỏi
Nhận biết
Tìm số phức z thoả mãn: |z - 2 + i| = 2. Biết phần ảo nhỏ hơn phần thực 3 đơn vị.
A.
z = 2-√2 + (-1-√2)i ; z = 2+√2 + (-1+√2)i
B.
z = 2 + (-1-√2)i ; z = 2 + (-1+√2)i
C.
z = -√2 + (-3-√2)i ; z = √2 + (-3+√2)i
D.
z = 2-2√2 + (-1-2√2)i ; z = 2+√2 + (-1+2√2)i
Đáp án đúng: A
Lời giải của Luyện Tập 365
Gọi số phức z = a+bi
Theo bài ra ta có:
<=>
<=> hoặc
Vậy số phức z cần tìm là:
z = 2-√2 + (-1-√2)i ; z = 2+√2 + (-1+√2)i
Câu hỏi liên quan
Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (α): 2x - y + z - 2 = 0, (β): x + 2y +2z - 4 = 0. Viết phương trình đường thẳng d nằm trong (α), song song với (β) và cách (β) một khoảng bằng 1.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: == Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.
Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).
Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.
Cho hàm số y = . a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.