Skip to main content

Chứng minh rằng năm điểm A, B, E, D, F cùng thuộc một đường tròn.

Chứng minh rằng năm điểm A, B, E, D, F cùng thuộc một đường tròn.

Câu hỏi

Nhận biết

Chứng minh rằng năm điểm A, B, E, D, F cùng thuộc một đường tròn.


A.
\widehat{BED}=\widehat{BFD}=\widehat{BAD}= 900
B.
\widehat{BED}=\widehat{BDF}=\widehat{BAD}= 900
C.
\widehat{BED}=\widehat{BDF}=\widehat{BDA}= 900
D.
\widehat{BDE}=\widehat{BFD}=\widehat{BAD}= 900
Đáp án đúng: A

Lời giải của Luyện Tập 365

Tính theo tính chất tiếp , ta có : \widehat{BED}=\widehat{BFD}= 900

Mà \widehat{BAD} = 900 (giả thiết).

Do đó \widehat{BED}=\widehat{BFD}=\widehat{BAD}= 900

Vậy năm điểm A, B, E, D, F cùng thuộc đường tròn đường kính BD.

Câu hỏi liên quan

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Giải phương trình với a = -2

    Giải phương trình với a = -2