Skip to main content

Cho tam giác ABC vuông tại A và AC > AB, D là một điểm trên cạnh AC sao cho CD < AD. Vẽ đường tròn (D) tâm D và tiếp xúc với BC tại E. Từ B vẽ tiếp tuyến thứ hai của đường tròn (D) với F là tiếp điểm khác E. Trả lời câu hỏi dưới đây: Chứng minh rằng năm điểm A, B, E, D, F cùng thuộc một đường tròn.

Cho tam giác ABC vuông tại A và AC > AB, D là một điểm trên cạnh AC sao cho CD &

Câu hỏi

Nhận biết

Cho tam giác ABC vuông tại A và AC > AB, D là một điểm trên cạnh AC sao cho CD < AD. Vẽ đường tròn (D) tâm D và tiếp xúc với BC tại E. Từ B vẽ tiếp tuyến thứ hai của đường tròn (D) với F là tiếp điểm khác E.

Trả lời câu hỏi dưới đây:

Chứng minh rằng năm điểm A, B, E, D, F cùng thuộc một đường tròn.


A.
\widehat{BED}=\widehat{BFD}=\widehat{BAD}= 900
B.
\widehat{BED}=\widehat{BDF}=\widehat{BAD}= 900
C.
\widehat{BED}=\widehat{BDF}=\widehat{BDA}= 900
D.
\widehat{BDE}=\widehat{BFD}=\widehat{BAD}= 900
Đáp án đúng: A

Lời giải của Luyện Tập 365

Tính theo tính chất tiếp , ta có : \widehat{BED}=\widehat{BFD}= 900

Mà \widehat{BAD} = 900 (giả thiết).

Do đó \widehat{BED}=\widehat{BFD}=\widehat{BAD}= 900

Vậy năm điểm A, B, E, D, F cùng thuộc đường tròn đường kính BD.

Câu hỏi liên quan

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông