Skip to main content

Tìm các số nguyên a để M là số nguyên.

Tìm các số nguyên a để M là số nguyên.

Câu hỏi

Nhận biết

Tìm các số nguyên a để M là số nguyên.


A.
a = 2; a = 3; a = 0
B.
a = 2; a = 3; a =0; a = -1
C.
a = 2; a = 3
D.
a = 0; a = -1
Đáp án đúng: C

Lời giải của Luyện Tập 365

Điều kiện: a > 0,  a ≠ 1.

M là số nguyên <=> a - 1 là ước của 2. 

<=> a - 1 ∈ {1; -1; 2; -2 }

<=> a ∈ { 2; 0; 3; -1}

So với điều kiện ta được: a = 2; a = 3

Câu hỏi liên quan

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Cho hệ phương trình:

    Cho hệ phương trình: left{begin{matrix} x + ay = 3a\ ax - y = a^{2}-2 end{matrix}right.

    Trả lời câu hỏi dưới đây:

    Giải hệ phương trình với a = 2

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông