Skip to main content

Hai điểm A, B và gốc tọa độ O tạo thành tam giác vuông AOB. Quay tam giác vuông AOB một vòng quanh cạnh góc vuông OA cố định ta được một hình gì? Tính diện tích xung quanh hình đó.

Hai điểm A, B và gốc tọa độ O tạo thành tam giác vuông AOB. Quay tam giác vuông AOB mộ

Câu hỏi

Nhận biết

Hai điểm A, B và gốc tọa độ O tạo thành tam giác vuông AOB. Quay tam giác vuông AOB một vòng quanh cạnh góc vuông OA cố định ta được một hình gì? Tính diện tích xung quanh hình đó.


A.
15\sqrt{2}\Pi
B.
16\sqrt{2}\Pi
C.
17\sqrt{2}\Pi
D.
18\sqrt{2}\Pi
Đáp án đúng: B

Lời giải của Luyện Tập 365

Khi quay tam giác OAB quanh trục OA ta có hình nón với chiều cao h = 4, bán kính đáy r = 4 => l = 4\sqrt{2}

S_{xq} = \Pi rl = \Pi .4.4\sqrt{2} = 16\sqrt{2}\Pi

Câu hỏi liên quan

  • Chứng minh rằng: AM2 = AN.AB

    Chứng minh rằng: AM2 = AN.AB

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Rút gọn A

    Rút gọn A

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5