Skip to main content

Cho E là tập hợp các số gồm 3 chữ số khác nhau đôi một được lập thành từ các số 1, 2, 3, 4, 5, 6. Lấy ngẫu nhiên một phần tử của E. Tính xác suất sao cho lấy được một số mà các chữ số của nó đều chẵn.

Cho E là tập hợp các số gồm 3 chữ số khác nhau đôi một được lập thành từ các số 1,

Câu hỏi

Nhận biết

Cho E là tập hợp các số gồm 3 chữ số khác nhau đôi một được lập thành từ các số 1, 2, 3, 4, 5, 6. Lấy ngẫu nhiên một phần tử của E. Tính xác suất sao cho lấy được một số mà các chữ số của nó đều chẵn.


A.
\small \frac{1}{5}
B.
\small \frac{1}{10}
C.
\small \frac{1}{20}
D.
\small \frac{1}{40}
Đáp án đúng: C

Lời giải của Luyện Tập 365

Gọi \small \overline{abc} là số có 3 chữ số khác nhau. Khi đó a có 6 cách chọn; b có 5 cách chọn, c có 4 cách chọn. => Có: 6.5.4=120 số.

Gọi \small \Omega là không gian mẫu.

=> Số phần tử của không gian mẫu là: n(\small \Omega) =120

Gọi A là biến cố: “chọn được số mà các chữ số của nó đều chẵn” 

=> A={246;264;462;426;624;642}

=> n(A)=6

Xác suất cần tìm là: P(A)=\small \frac{n(A)}{n(\Omega )}=\frac{6}{120}=\frac{1}{20}

Câu hỏi liên quan

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3

    Giải phương trình sin2x.(tan x - 1) = 3 sin x.(cos x + sin x) - 3.

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực.

    Cho hàm số y =x3-6x2+3mx+2, với m là tham số thực. a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số đã cho khi m=3 (HS tự làm). b) Tìm m sao cho đồ thị của hàm số đã cho có các điểm cực trị A,B thỏa mãn AB=4√65.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.