Skip to main content

Cho hình thang cân ABCD (BC//AD), hai đường chéo AC và BD cắt nhau tại O sao cho = 600. Gọi I, M, N, P, Q lần lượt là trung điểm của BC, OA, OB, AB, CD. Chứng minh: Trả lời câu hỏi dưới đây: DMNC là tứ giác nội tiếp.

Cho hình thang cân ABCD (BC//AD), hai đường chéo AC và BD cắt nhau tại O sao cho =

Câu hỏi

Nhận biết

Cho hình thang cân ABCD (BC//AD), hai đường chéo AC và BD cắt nhau tại O sao cho = 600. Gọi I, M, N, P, Q lần lượt là trung điểm của BC, OA, OB, AB, CD. Chứng minh:

Trả lời câu hỏi dưới đây:

DMNC là tứ giác nội tiếp.


A.
widehat{MDN}= widehat{CND}
B.
widehat{ABD} = widehat{ACD}
C.
widehat{ABD} = widehat{MND} 
D.
widehat{ACD} = widehat{MND}
Đáp án đúng: D

Lời giải của Luyện Tập 365

Do ABCD là hình thang cân nên nội tiếp đường tròn

=> widehat{ABD} = widehat{ACD}  (cung chắn cung AD)  (1)

Do MN là đường trung bình của ∆AOB nên MN//AB

=> widehat{ABD} = widehat{MND}    (đồng vị)   (2)

Từ (1) và (2) => widehat{ACD} = widehat{MND}    (3)

Nên hai điểm C, N  cùng nhìn đoạn MD dưới hai góc bằng nhau. Do đó, DMNC là tứ giác nội tiếp.

Câu hỏi liên quan

  • Giải hệ phương trình

    Giải hệ phương trình left{begin{matrix} 12x + y = 25\ x + 2y = 4 end{matrix}right.

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x

    Cho Parabol  (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB