Skip to main content

Cho tam giác nhọn ABC có AB = b, AC = c. M là một điểm thay đổi trên cạnh AB. Đường tròn ngoại tiếp tam giác  BMC  cắt các cạnh AC tại N. Trả lời câu hỏi dưới đây:Gọi I là tâm đường tròn ngoại tiếp tam giác AMN. Chứng minh I luôn thuộc một đường thẳng cố định.

Cho tam giác nhọn ABC có AB = b, AC = c. M là một điểm thay đổi trên cạnh AB. Đường tròn

Câu hỏi

Nhận biết

Cho tam giác nhọn ABC có AB = b, AC = c. M là một điểm thay đổi trên cạnh AB. Đường tròn ngoại tiếp tam giác  BMC  cắt các cạnh AC tại N.

Trả lời câu hỏi dưới đây:

Gọi I là tâm đường tròn ngoại tiếp tam giác AMN. Chứng minh I luôn thuộc một đường thẳng cố định.


A.
I thuộc đường thẳng cố định qua B và vuông góc với AC.
B.
I thuộc đường thẳng cố định qua A và vuông góc với BC.
C.
I thuộc đường thẳng cố định qua C và vuông góc với AB.
D.
I thuộc đường thẳng cố định qua C và vuông góc với BC.
Đáp án đúng: B

Lời giải của Luyện Tập 365

Vẽ Ax là tiếp tuyến của đường tròn (I)

Ta có \widehat{xAC}=\widehat{ACB} => Ax // BC (Hệ quả góc tạo bởi tia tiếp tuyến và dây cung)

\widehat{ACB}=\widehat{AMN}

Nên  \widehat{xAC}=\widehat{ACB} => Ax //BC

Mà IA ⊥Ax (Ax là tia tiếp tuyến của đường tròn (I))

Do đó IA ⊥BC

Vậy I thuộc đường thẳng cố định qua A và vuông góc với BC.

 

Câu hỏi liên quan

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Giải hệ phương trình với a = 2

    Giải hệ phương trình với a = 2

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Tính AC và BD biết

    Tính AC và BD biết widehat{AOC} = alpha. Chứng tỏ tích AC.BD không phụ thuộc vào  alpha

  • Tính giá trị biểu thức của A với x =

    Tính giá trị biểu thức của A với x = frac{1}{2}

  • Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

    Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K

  • Giải phương trình với a = -2

    Giải phương trình với a = -2