Skip to main content

Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng ∆: x – y  = 0. Đường tròn (C) có bán kính R = √10 cắt ∆ tại hai điểm A và B sao cho AB  = 4√2. Tiếp tuyến của C tại A và B cắt nhau tại một điểm thuộc tia Oy. Viết phương trình đường tròn (C ).

Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng ∆: x – y = 0. Đ

Câu hỏi

Nhận biết

Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng ∆: x – y  = 0. Đường tròn (C) có bán kính R = √10 cắt ∆ tại hai điểm A và B sao cho AB  = 4√2. Tiếp tuyến của C tại A và B cắt nhau tại một điểm thuộc tia Oy. Viết phương trình đường tròn (C ).


A.
Đường tròn (C ) có phương trình (x – 5)2 + (y – 3)2 = 10.
B.
Đường tròn (C ) có phương trình (x + 5)2 + (y + 3)2 = 10.
C.
Đường tròn (C ) có phương trình (x – 5)2 + (y + 3)2 = 10.
D.
Đường tròn (C ) có phương trình (x + 5)2 + (y – 3)2 = 10.
Đáp án đúng: A

Lời giải của Luyện Tập 365

Gọi M là giao điểm của tiếp tuyến tại A và B của (C ), H là giao diểm của AB và IM. Khi đó M(0;t), với t  ≥ 0; H là trung điểm của AB. Suy ra AH = \frac{AB}{2} = 2√2.

\frac{1}{AH^{2}} = \frac{1}{AM^{2}} + \frac{1}{AI^{2}}, suy ra AM = 2√10.

Do đó MH = \sqrt{AM^{2}-AH^{2}} = 4√2.

Mà MH = d(M, ∆) = \frac{|t|}{\sqrt{2}} , nên t = 8 . Do đó M(0; 8).

Đường thẳng IM qua M và vuông góc với ∆ nên có phương trình x + y – 8 = 0. Do đó tọa độ điểm H thỏa mãn hệ  \left\{\begin{matrix}x-y=0\\x+y-8=0\end{matrix}\right.=>H(4;4).

Ta có IH =\sqrt{IA^{2}-AH^{2}} = √2 = \frac{1}{4}HM, nên  \overrightarrow{IH} =\frac{1}{4}\overrightarrow{HM}

Do đó I(5;3).

Vậy đường tròn (C ) có phương trình (x – 5)2 + (y – 3)2 = 10.

 

Câu hỏi liên quan

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình củ

    Trong mặt phẳng với hệ trục Oxy, cho hình thoi ABCD biết phương trình của một đường chéo là 3x+y-7=0, điểm B(0;-3), diện tích hình thoi bằng 20. Tìm tọa độ các đỉnh còn lại của hình thoi.

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳ

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (P) và đường thẳng d lần lượt có phương trình (P): 2x-y-2z=0, d: \frac{x}{-1}=\frac{y+1}{2}=\frac{z-2}{1} Viết phương trình mặt cầu (S) có tâm thuộc đường thẳng (d), cách mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) một khoảng bằng 3 và cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính bằng 4.

  • Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1:

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d1: \left\{\begin{matrix}x=2+t\\y=2+t\\z=3-t\end{matrix}\right., d2: \frac{x-1}{2} = \frac{y-2}{1} = \frac{z-1}{5}. Viết phương trình mặt phẳng song song và cách đều hai đường thẳng d1 và d2.

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Giải hệ phương trình

    Giải hệ phương trình \left\{\begin{matrix}x^{2}-2xy-2x+2y=0\\x^{4}-6x^{2}y-6x^{2}+4y^{2}=0\end{matrix}\right. (x, y\epsilon R)