Skip to main content

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆: \small \frac{x+2}{1} = \small \frac{y-1}{3} = \small \frac{z+5}{-2} và hai điểm A(-2 ; 1 ; 1); B(-3 ; -1 ; 2). Tìm tọa độ điểm M thuộc đường thẳng ∆ sao cho tam giác MAB có diện tích bằng 3√5

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆:

Câu hỏi

Nhận biết

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆: \small \frac{x+2}{1} = \small \frac{y-1}{3} = \small \frac{z+5}{-2} và hai điểm A(-2 ; 1 ; 1); B(-3 ; -1 ; 2). Tìm tọa độ điểm M thuộc đường thẳng ∆ sao cho tam giác MAB có diện tích bằng 3√5


A.
M(-2 ; 1 ; -5) hoặc M(-14 ; 35 ; 19)
B.
M(-2 ; 1 ; -5) hoặc M(-14 ; -35 ; 19)
C.
M(2 ; 1 ; -5) hoặc M(-14 ; -35 ; 19)
D.
M(-2 ; 1 ; 5) hoặc M(-14 ; -35 ; 19)
Đáp án đúng: B

Lời giải của Luyện Tập 365

M ∈ ∆ ⇒ M(-2 + t ; 1 + 3t ; -5 - 2t)

\small \overrightarrow{AB} = (-1 ; -2 ; 1); \small \overrightarrow{AM}(t ; 3t ; -6 - 2t) ; [\small \overrightarrow{AB} , \small \overrightarrow{AM}] = (t + 12 ; -t - 6 ; -t)

SMAB = 3√5 ⇔ \small \frac{1}{2}|[\small \overrightarrow{AB} , \small \overrightarrow{AM}]| = 3√5

⇔ \small \frac{1}{2}\small \sqrt{(t+12)^{2}+(-t-6)^{2}+t^{2}} = 3√5

⇔ 3t2 + 36t = 0 ⇔ \small \begin{bmatrix} t=0\\ t=-12 \end{bmatrix}Vậy M(-2 ; 1 ; -5) hoặc M(-14 ; -35 ; 19)

Câu hỏi liên quan

  • Tìm nghiệm trong khoảng(0,π) của phương trình

    Tìm nghiệm trong khoảng(0, π) của phương trình \frac{sin2x+2cos^{2}x+2sinx+2cosx}{cos\left(x-\frac{\prod}{4}\right)}=\frac{\sqrt{6}cos2x}{sinx}

  • Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung đ

    Trong mặt phẳng (P) cho tam giác đều ABC cạnh bằng a√6. Gọi M là trung điểm của AC và B' là điểm đối xứng với B qua M. Dựng điểm S sao cho SB' =3a và vuông góc với mặt phẳng (ABC). Gọi H là hình chiếu của M lên SB. Tính thể tích khối chóp H.ABC và góc giữa hai mặt phẳng (SAB) và (SBC).

  • Tìm hệ số củax8 trong khai triển Niutơn của

    Tìm hệ số của x8 trong khai triển Niutơn của \left(1-x^{4}-\frac{1}{x}\right)^{2n}, biết rằng n thỏa mãn A^{2}_{n}.C^{n-1}_{n} = 180. (A^{k}_{n}C^{k}_{n} lần lượt là số chỉnh hợp, số tổ hợp chập k của n phần tử).

  • Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a.

    Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B, BC = 2a. Gọi M là trung điểm của AC. Hình chiếu H của S lên mặt đáy (ABC) thuộc tia đối của tia MB sao cho MB = 2MH. Biết rằng góc giữa SA và mặt đáy (ABC) bằng 600. Tính thể tích khối chóp SABC và khoảng cách từ trung điểm E của SC tới (SAH).

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.

  • Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Gọi O' là tâm của mặt đáy A'B'C'D', điểm M nằm trên đoạn thẳng BD sao cho BM=\frac{3}{4}BD. Tính thể tích khối tứ diện ABMO' và khoảng cách giữa hai đường thẳng AM, O'D. 

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho hàm số y =

    Cho hàm số y = \frac{2x-1}{x-1} a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. b) Tìm m để đường thẳng d : y = 3x+m cắt đồ thị (C) tại hai điểm A, B sao cho độ dài AB nhỏ nhất.

  • Giải phương trình

    Giải phương trình (1-\sqrt{1-x}).\sqrt[3]{2-x} = x.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn \left|z-\bar{z}+1-i\right| = √5 và (2 - z)(i + \bar{z}) là số ảo.