Skip to main content

Trong không gian tọa độ Oxyz, cho điểm A(0 ; 0 ; -2) và đường thẳng ∆: \frac{x+2}{2} = \frac{y-2}{3} = \frac{z+3}{2} Tính khoảng cách từ A đến ∆ . Viết phương trình mặt cầu tâm A, cắt ∆ tại hai điểm B và C sao cho BC = 8

Trong không gian tọa độ Oxyz, cho điểm A(0 ; 0 ; -2) và đường thẳng ∆:&n

Câu hỏi

Nhận biết

Trong không gian tọa độ Oxyz, cho điểm A(0 ; 0 ; -2) và đường thẳng ∆: \frac{x+2}{2} = \frac{y-2}{3} = \frac{z+3}{2} Tính khoảng cách từ A đến ∆ . Viết phương trình mặt cầu tâm A, cắt ∆ tại hai điểm B và C sao cho BC = 8


A.
d(A ; ∆) = 3 (S): x2 + y2 + (z - 2)2 = 25
B.
d(A ; ∆) = 3 (S): x2 + y2 - (z + 2)2 = 25
C.
d(A ; ∆) = 3 (S): x2 + y2 + (z + 2)2 = 25
D.
d(A ; ∆) = 3 (S): x2 - y2 + (z + 2)2 = 25
Đáp án đúng:

Lời giải của Luyện Tập 365

A(0 ; 0 ; -2) , ∆: \frac{x+2}{2} = \frac{y-2}{3} = \frac{z+3}{2}

+ (d) qua M(-2 ; 2 ; -3), vtcp: \overrightarrow{a} = (2 ; 3 ; 2)

\overrightarrow{MA} = (2 ; -2 ; 1)

+ [\overrightarrow{a} ; \overrightarrow{MA}] = (7 ; 2 ; -10)

⇒ |[\overrightarrow{a} ; \overrightarrow{MA}]| = \sqrt{49+4+100} = \sqrt{153}

+ |\overrightarrow{a}| = \sqrt{4+9+4} = \sqrt{17}

d(A ; ∆) = \frac{|[\overrightarrow{a};\overrightarrow{MA}]|}{|\overrightarrow{a}|} = \frac{\sqrt{153}}{\sqrt{17}} = 3

Mà R2 = d2 (A , ∆) + \frac{BC^{2}}{4} = 9 + 16 = 25

Suy ra mặt cầu (S): x2 + y2 + (z + 2)2 = 25

Câu hỏi liên quan

  • Cho các số thực x, y thỏa mãn điều kiện x+y=

    Cho các số thực x, y thỏa mãn điều kiện x+y=\sqrt{x-1}+\sqrt{2y+2} Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức 
    P=x^{2}+y^{2}+2(x+1)(y+1)+8\sqrt{4-x-y}

  • Cho các số thực x,y thỏa mãn x

    Cho các số thực x,y thỏa mãn x\sqrt{2-y^{2}} + y\sqrt{2-x^{2}} = 2 Tìm giá trị lớn nhất của biểu thức  P=(x+y)^{3} -12(x-1).(y-1)+√xy.

  • Tìm số phức z thỏa mãn

    Tìm số phức z thỏa mãn (z+i)^{2}+\left|z-2\right|^{2}=2(\bar{z}-3i)^{2} .

  • Tính tích phân

    Tính tích phân I = \int_{1}^{e}\frac{\left(1+2x\right)lnx+3}{1+xlnx}dx

  • Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có ph

    Trong mặt phẳng với hệ trục Oxy, cho tam giác ABC cân, cạnh đáy BC có phương trình x + y + 1 = 0. Phương trình đường cao vẽ từ B  là x - 2y - 2 = 0. Điểm M(2; 1) thuộc đường cao vẽ từ C. Viết phương trình các cạnh bên của tam giác ABC.

  • Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên

    Một hộp đựng 5 viên bi đỏ, 6 viên xanh và 7 viên bi vàng. Chọn ra 5 viên bi rừ hộp đó. Hỏi có bao nhiêu cách chọn mà 5 viên bi được chọn không có đủ cả 3 màu?

  • Giải phương trình

    Giải phương trình  \frac{tanx+1}{tanx-1}=\frac{1+sin2x}{tanxsin2x}

  • Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y

    Trong mặt phẳng với hệ trục Oxy, cho hai đường thẳng ∆1: 3x+y+5=0, ∆2: x-2y-3=0 và đường tròn (C): (x-3)^{2}+(y+5)^{2}=25. Tìm điểm M thuộc (C), điểm N thuộc đường thẳng ∆1, sao cho M và N đối xứng qua ∆2.

  • Tính tích phân I=

    Tính tích phân I=\int_{0}^{\frac{\prod}{4}}\frac{sin2x+cos2x}{sinx+cosx}dx

  • Cho hàm số. Tìm điểm M trên đồ thị (C) sao cho

    Cho hàm số y = \frac{x+1}{x-1}. a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số đã cho (HS tự làm). b) Tìm điểm M trên đồ thị (C) sao cho tổng khoảng cách từ M đến các đường thẳng ∆1: 2x + y - 4 = 0 và ∆2: x + 2y - 2 = 0 là nhỏ nhất.