Skip to main content

\frac{\sqrt{27}}{\sqrt{3}} ; \frac{\sqrt{2}}{\sqrt{18}}\frac{\sqrt{2ab^{4}}}{\sqrt{50}}

; ; 

Câu hỏi

Nhận biết

\frac{\sqrt{27}}{\sqrt{3}} ; \frac{\sqrt{2}}{\sqrt{18}}\frac{\sqrt{2ab^{4}}}{\sqrt{50}}


A.
3; \frac{1}{3} ; \frac{b}{5}\sqrt{a}
B.
3; \frac{1}{3} ; \frac{b}{\sqrt{5}}\sqrt{a}
C.
3; \frac{1}{3} ;\frac{b^{2}}{5}\sqrt{a}
D.
3; \frac{1}{3} ; 5\sqrt{ab}
Đáp án đúng: C

Lời giải của Luyện Tập 365

\frac{\sqrt{27}}{\sqrt{3}} = \sqrt{\frac{27}{3}}=\sqrt{9}=\sqrt{3^{2}}=3

\frac{\sqrt{2}}{\sqrt{18}}=\sqrt{\frac{2}{18}}=\sqrt{\frac{1}{9}}=\frac{1}{3}

\frac{\sqrt{2ab^{4}}}{\sqrt{50}}=\sqrt{\frac{2ab^{4}}{50}}=\sqrt{\frac{ab^{4}}{25}} = \frac{b^{2}}{5}\sqrt{a}

Câu hỏi liên quan

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

    Kẻ EI vuông góc MN, cắt AN tại D. Tính CD biết ME = 8cm; MN=10cm

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Tìm b để A =

    Tìm b để A = frac{5}{2}

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Giải phương trình với a = -2

    Giải phương trình với a = -2