Tìm m để phương trình (1) có nghiệm .
AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.
Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.
Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1 và x2. Chứng minh rằng: x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông
Cho Parabol (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.
Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)
Trả lời câu hỏi dưới đây:
Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k
Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K
Tìm a để phương trình có 2 nghiệm nguyên
Tìm b để A =
Tính AC và BD biết = . Chứng tỏ tích AC.BD không phụ thuộc vào