Skip to main content

\sqrt{x^{2}-4x+5} + \sqrt{9y^{2}-6y+1} = 1

Câu hỏi

Nhận biết

\sqrt{x^{2}-4x+5} + \sqrt{9y^{2}-6y+1} = 1


A.
(x; y) = (1; 2)
B.
(x; y) = (2; -1)
C.
(x; y) = (1; \frac{2}{3} )
D.
(x; y) = (2; \frac{1}{3} )
Đáp án đúng: D

Lời giải của Luyện Tập 365

\sqrt{x^{2}-4x +5} = \sqrt{(x-2)^{2}+1}  ≥ 1   

\sqrt{9y^{2}-6y+1} = \sqrt{(3y-1)^{2}}    ≥ 0

Vậy \sqrt{x^{2}-4x+5} + \sqrt{9y^{2}-6y+1} = 1

<=> \sqrt{(x-2)^{2}+1} + \sqrt{(3y-1)^{2}} = 1

nên muốn thỏa mãn phương trình thì: \left\{\begin{matrix} x-2=0\\ 3y-1=0 \end{matrix}\right.   <=> \left\{\begin{matrix} x=2\\ y=\frac{1}{3} \end{matrix}\right.

Câu hỏi liên quan

  • AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

    AO cắt ME tại C. Chứng minh tứ giác ABCM nội tiếp.

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Cho biểu thức:A =

    Cho biểu thức:

    A = left ( frac{3}{sqrt{b}-1}+frac{sqrt{b}-3}{b-1} right ):left ( frac{b+2}{b+sqrt{b}-2}-frac{sqrt{b}}{sqrt{b}+2} right )

    Trả lời câu hỏi dưới đây:

    Rút gọn A

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB

  • Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)

    Trả lời câu hỏi dưới đây:

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

    Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k

  • Giải phương trình (1) khi m = -5

    Giải phương trình (1) khi m = -5

  • Cho phương trình: ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Cho phương trình: 

    ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)

    Trả lời câu hỏi dưới đây:

    Giải phương trình với a = -2

  • Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc

    Cho nửa đường tròn (O), đường kính AB = 2R. Trên tia đối của tia AB lấy điểm E khắc với điểm A. Từ các điểm E, A và B kẻ các tiếp tuyến của nửa đường tròn (O). Tiếp tuyến kẻ từ E lần lượt cắt các tiếp tuyến từ điểm A và B tại C và D.

    Trả lời câu hỏi dưới đây:

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a

    Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a