Cho Parabol (P): ax2(a ≠ 0) và đường thẳng d: y=2x - a. Tìm điểm a để d tiếp xúc với (P). Tìm tọa độ tiếp điểm.
Chứng minh rằng phương trình (1) luôn có nghiệm với mọi a
Tìm a để hệ phương trình có một nghiệm số duy nhất thỏa mãn: x2 - 12x – 14y < 0
Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=x2và điểm A(0;1)
Trả lời câu hỏi dưới đây:
Tìm đường thẳng d biết đường thẳng đó đi qua A(0;1) và có hệ số góc k
Chứng minh rằng d luôn cắt (P) tại 2 điểm phân biệt M và N với mọi K
Cho phương trình:
ax2 – 2(2a – 1) x+ 3a – 2 = 0 (1)
Giải phương trình với a = -2
Giải hệ phương trình với a = 2
Tìm m để phương trình (1) có nghiệm .
Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1 và x2. Chứng minh rằng: x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông