Skip to main content

(\frac{\sqrt{5}+1}{1+\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}-1}{1+\sqrt{3}-\sqrt{5}})(\sqrt{3}-4\sqrt{\frac{1}{3}} + 2)√0,2 - √1,01 > 0

+ 2)√0,2 - √1,01 > 0

Câu hỏi

Nhận biết

(\frac{\sqrt{5}+1}{1+\sqrt{5}+\sqrt{3}}+\frac{\sqrt{5}-1}{1+\sqrt{3}-\sqrt{5}})(\sqrt{3}-4\sqrt{\frac{1}{3}} + 2)√0,2 - √1,01 > 0


A.
Xem phần lời giải
Đáp án đúng: A

Lời giải của Luyện Tập 365

Biến đổi vế trái ta có:

\frac{\sqrt{5}+\sqrt{15}-5+1+\sqrt{3}-\sqrt{5}+\sqrt{5}+5+\sqrt{15}-1-\sqrt{5}-\sqrt{3}}{2\sqrt{3}-1}\frac{3-4+2\sqrt{3}}{\sqrt{3}}.\sqrt{0,2}-\sqrt{1,01}=

\frac{2\sqrt{15}}{2\sqrt{3}-1}.\frac{2\sqrt{3}-1}{\sqrt{3}}.√0,2 - √1,01

= 2√5 . √0,2 - √1,01

= 2 - √1,01 > 0

Bất đẳng thức được chứng minh.

Câu hỏi liên quan

  • Tìm m để phương trình (1) có nghiệm .

    Tìm m để phương trình (1) có nghiệm .

  • Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2.

    Gọi hoành độ giao điểm 2 điểm M và N lần lượt là x1  và x2. Chứng minh rằng:  x1x2=-1, từ đó suy ra tam giác MON là tam giác vuông

  • Cho biểu thức A = (

    Cho biểu thức A = ( frac{x^{2}}{x^{3}-4x} - frac{6}{3x-6} + frac{1}{x+2}) : ( x - 2 + frac{10-x^{2}}{x+2})

    Trả lời câu hỏi dưới đây:

    Rút gọn biểu thức A

  • Giải phương trình với a = -2

    Giải phương trình với a = -2

  • Tìm a để phương trình có 2 nghiệm nguyên

    Tìm a để phương trình có 2 nghiệm nguyên

  • Chứng minh DM.CE=DE.CM

    Chứng minh DM.CE=DE.CM

  • Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác AC

    Gọ M là tiếp điểm của tiếp tuyến kẻ từ E với nửa đường tròn (O). Chứng minh tứ giác ACMO nội tiếp.

  • Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Cho phương trình x2- 4x + m = 0 (1), với m là tham số.

    Trả lời câu hỏi dưới đây:

    Giải phương trình (1) khi m = -5

  • Rút gọn biểu thức A

    Rút gọn biểu thức A

  • Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đư

    Cho nửa đường tròn tâm O đường kính MN. Từ một điểm A trên tiếp tuyến Mx của nửa đường tròn (O), vẽ tiếp tuyến thứ hai AE ( E là tiếp điểm). Nối A với N cắt nủa đưởng tròn (O) ở B.

    Trả lời câu hỏi dưới đây:

    Chứng minh rằng: AM2 = AN.AB